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ABSTRACT
Reliable human parts segmentation on 2D images plays an
important role in many human-centric computer vision tasks.
While significant achievements have been made on human
pose estimation, the performance on human parts segmenta-
tion remains low. In this paper, we present a novel technique
that we call Pose2Body that robustly conducts human parts
segmentation based on the pose estimation results. We parti-
tion an image into superpixels and set out to assign a segment
label to each superpixel most consistent with the pose. We de-
sign special feature vectors for every superpixel-label assign-
ment as well as superpixel-superpixel pairs and model opti-
mal labeling as to solve for a conditional random field (CRF).
Comprehensive experiments show that our technique achieves
substantial improvements over the state-of-the-art solutions.

Index Terms— Semantic labeling; human parts segmen-
tation; pose estimation; conditional random field

1. INTRODUCTION

Semantic segmentation, also known as image labeling or
scene parsing, aims to assign semantic labels to each pixel on
the image. Successful solutions can benefit numerous appli-
cations ranging from scene understanding to 3D reconstruc-
tion. Most recently, the emphasis has shifted to the more
specific task of human part parsing into anatomically mean-
ingful components - head, neck, trunk, and upper and lower
limbs. Such human-centric analysis enables more reliable
person identification, video surveillance, virtual clothes fit-
ting, etc.

Human parts semantic segmentation is also closely related
to human pose estimation which has achieved significant im-
provements over the past few years with the help of deep
convolutional neural networks. Latest solutions can simul-
taneously achieve high accuracy and reliability. For example,
the RMPE method [1] employ a novel regional multi-person
pose estimation framework to and can achieve 82.1% mAP
accuracy on MPII dataset. In contrast, the accuracy in hu-
man parts segmentation still falls short: the state-of-the-art
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Fig. 1. Our semantic body parts segmentation compared with
FCN [4]. (a) is input image. (b) is FCN result. (d) is our
final result guided by pose estimation. (c) is the close-up view
comparison.

solutions [2, 3, 4, 5] achieve an accuracy range from 50 to
58 mIOU on VOC PASCAL-Human-Part dataset and are still
sensitive to occlusion, person size and unusual pose.

We observe that human part segmentation and pose esti-
mation are two complementary problems. On one hand, if we
correctly conduct per-pixel semantic labeling, we can group
the pixels of the same label to form the skeleton and hence
pose. On the other, pose estimation provides not only valu-
able priors on the pixel labeling but also important connectiv-
ity, e.g., the arm should be connected to the forearm as well
as to the trunk. We therefore present a joint pose and human
part segmentation scheme that can conduct multi-person seg-
mentation.

Given an estimation of human pose that consists of a set of
vertices (joints) and skeleton edges (segments), we partition
the image into superpixels and set out to assign a segment
label to each superpixel. We design a 5D feature vector for
each superpixel-label assignment to account for the spatial
relationship between the superpixel location and the skele-
ton. Next, we compute the optimal labeling by considering



all pairs of superpixels via a conditional random field (CRF).
Specifically, for each pair of superpixels and their correspond-
ing labels, we compute a 11D feature vector (5D for each su-
perpixel and the last dimension for computing the likelihood
of the two superpixels sharing a joint). We train a group of
classifiers on the feature vector using logistic regression and
then measure the likelihood of pair-wise superpixel semantic
assignments.

To formulate the final energy function, we use the latest
RMPE [1] to obtain pose estimation and the deeplab seman-
tic segmentation framework [2] to obtain per-pixel semantic
labeling stored as a score map as initialization. The final en-
ergy function consists of two terms, the first unary term for
measuring deviations of the proposed label to the semantic
score map whereas the second pairwise term directly uses the
outputs from the trained classifiers. Finally, we solve for this
CRF using integer linear programming. We conduct exten-
sive experiments on VOC PASCAL-Person-Part dataset. In
particular, we show that on the above dataset, our technique
achieves substantial improvements over the state-of-the-art.
Fig. 1 shows our segmentation result compare with baseline
method FCN [4].

2. RELATED WORKS

Compared with human pose estimation, human parts segmen-
tation has adopted completely different solution routes. Tra-
ditional techniques have long used the graphical model to
solve for human-clothes parsing where the goal is to label
each image pixel as either a semantic apparel label or human
body [6]. These techniques are sensitive to occlusions and
movements. Xia et al. [7] guided human parts parsing using
pose-guided segmentation proposals that can handle complex
movements.

Same as pose estimation, recent successful approaches
unanimously adopted the fully convolution neural networks
(FCN) [4]. Techniques such as the DeepLab models [8] made
use of the fully connected pairwise Conditional Random Field
(CRF) as an auxiliary post-processing step to refine the initial
estimation. Wang et al. [9] adopted a simpler and faster solu-
tion by leveraging foreground/background separation. How-
ever, their technique are sensitive to local ambiguity due to the
FCN’s inherent invariance property. For example, legs can be
incorrectly labeled as arms and background can be labeled as
legs.

Improved FCN-type approaches employ scale variations
(different size of humans in the image). Chen et al. [5] used
multiple scaled inputs to conduct results consolidation and
sought to find the optimal scale configuration. [10] addressed
the scale issue through ”zoom and refine” to handle smaller
body parts that are traditionally challenging in classical deep
network solutions. Most recently, [2] applied the Deep Resid-
ual Net to improve the performance by effectively exploiting
contextual information on individual pixels. However, by far

Fig. 2. Superpixel generation. (a) is input image. (b) shows
several bounding boxes detected by human detector [11]. (c)
is an initial superpixel result. We combine (b) and (c) to get
the final superpixel patches in (d).

the performance on body parts segmentation is still inferior to
pose estimation.

Our approach leverages both advances on pose estima-
tion and human parts segmentation. Closest to our work is
the approach by Xia et al [3] that refines semantic parts with
joint estimation. Specifically, they directly input the joint la-
bel map and initial semantic part score map to a FCN-type
neural network. We in contrast conduct a superpixel labeling
and model the optimization problem as to solve for a CRF. In
particular, we explicitly measure pair-wise label differences
between superpixels based on a new class of feature descrip-
tors and we show this new formulation significantly improves
the performance.

3. HUMAN PARTS LABELING

Our approach assumes human poses on 2D images are known
and sets out to label every pixel to a specific human part.
For poses, we adopt 14 joint representations composed of
forehead, neck, left/right shoulder, left/right elbow, left/right
wrist, left/right waist, left/right knee and left/right ankle. We
follow the same semantic human part labeling notation that
partitions human body into C = 7 labels: head, torso, upper
arm, lower arm, upper leg, lower leg, and background (bg).

3.1. Problem Formulation

Before proceeding, we first clarify our notations. Given
an image I , our goal is to output a pixel-wise labeling for
each human part. Instead of conducting per-pixel estimation,
we first partition the image into superpixels. Specifically,
we adopt the Faster Mask-RCNN [11] to detect the human
bounding box(es) and apply simple linear iterative clustering
(SLIC) within every bounding box to partition the pixels into



N superpixels. {Lnp |n = 1, ..., N}, refers to labeling super-
pixel n as body part p. For the rest of the paper, all analysis
is carried within a specific bounding box although it can be
easily extended to multiple bounding boxes.

We adopt the random variable formulation as [12] by us-
ing three binary random variables (x, y, z) in domains x ∈
{0, 1}N×C , y ∈ {0, 1}(

N
2 ) and z ∈ {0, 1}(

N
2 )×C

2

. We use
xnc to show the superpixel’s label and ynn′ to describe the
relationship of two superpixels n and n′:

xnc =

{
1 n is of class c
0 otherwise

, ynn′ =

{
1 n, n′ is of same person
0 otherwise

(1)
Moreover, we use znn′cc′ = xncxn′c′ynn′ to correlate x

and y, where znn′cc′ = 1 refers that superpixel n and n′ be-
long to the same person (i.e., ynn′ = 1) and have labels c, c′

respectively. Otherwise, znn′cc′ = 0.Under this notion, we
can easily write down the attributes of a desirable labeling
scheme. First, we enforce each superpixel n to have precisely
one label, either body part or background as: for each n ∈ N :∑
c∈C xnc = 1.
Therefore, if a superpixel pair n-n′ belong to same per-

son (ynn′=1), n-n′ should be labeled as one of the body
parts rather than the background, i.e., for each n, n′ ∈

(
N
2

)
:

ynn′ ≤
∑
c∈C,c6=bg xnc, ynn′ ≤

∑
c∈C,c 6=bg xn′c.

Further, the transitive closure property should hold: if su-
perpixel pairs n-n′ and n-n′′ belong to the same person, then
pair n′ and n′′ should also belong to the same person, i.e., for
each n, n′, n′′ ∈

(
N
3

)
: ynn′ + yn′n′′ − 1 ≤ ynn′′

Finally, for any superpixel pair n-n′ and any cc′ ∈ C2

where znn′ = xncxn′c′ynn′ , for each n, n′ ∈
(
N
2

)
, we have:

xnc + xn′c′ + ynn′ − 2 ≤ znn′cc′ .
We refer to the four attributes as the labeling constraints.

3.2. Objective Function

Next, we put together an object function that obeys the label-
ing constraints above. Specifically, we model the problem as
a refinement process: we obtain an initial segmentation score
map Ps using state-of-art algorithm [2] along with an esti-
mated pose Lj using [1]. We define:

arg min
(x,z)∈D

F =

N∑
n=1

C∑
c=1

φdata(n, c, Ps)+∑
nn′∈(N2 )

∑
c,c′

φsmooth(n, c, n
′, c′, Ps, Lj)

(2)

where
φdata(n, c, Ps) = log

1− pnc
pnc

· xnc (3)

and

φsmooth(n, c, n
′, c′, Ps, Lj) = log

1− pnn′cc′(Ps, Lj)

pnn′cc′(Ps, Lj)
·znn′cc′ ,

(4)

where pnc ∈ (0, 1) is the probability of superpixel n being
labeled as class c , which can be extracted from the score map
Ps stored as a N × C matrix.

To solve for the object function F , we adopt the Fully-
connected Conditional Random Field or FCRF approach. A
dense FCRF consists of a data term and a smooth term, where
the data term φdata computes the unary potentials of super-
pixel patch n being labeled as c for every pair (n, c) ∈ N×C.
To compute the data term and correlate to our labeling con-
straints described in last section, we transform the original
φdata(n, n

′, Ps) to log 1−pnc
pnc

· xnc.
The smoothness term φsmooth computes pairwise po-

tentials of n and n′ being labeled as c and c′ respectively
over all possible superpixel nn′ ∈

(
N
2

)
and label pairs

cc′ ∈ C2. Computing the smooth term is more compli-
cated. Similar to the data term, we transform the original
φsmooth(n, c, n

′, c′, Ps, Lj) into log 1−pnn′cc′
pnn′cc′

· znn′cc′ where
pnn′cc′ is the probability of superpixels n and n′ being from
the same person and labeled as class c and c′ respectively. In
the following section, we discuss how to compute Pairwise
Probability pnn′cc′ from the training data.

4. COMPUTE PAIRWISE PROBABILITY

Recall that the pairwise term pnn′cc′ is affected by both the
joint location Lj (from the estimated pose) and the segmen-
tation score map Ps. Based on above observation, we aim to
train a mapping between each set of {n, n′, c, c′, Ps, Lj} and
pnn′cc′ , where nn′ ∈

(
N
2

)
, cc′ ∈ C2.

We design a feature descriptor f(n, n′, c, c′, Ps, Lj) (for
simplicity, we use f for the rest of the section) as a repre-
sentation for each {n, n′, c, c′, Ps, Lj} to train number of C2

classifiers. Each trained classifier outputs pnn′cc′ as the prob-
ability of znn′cc′ = 1. In our implementation, we adopt a
11-d feature vector based on the estimated pose as:

f = [fs(n, c, Ps, Lj) fs(n
′, c′, Ps, Lj) fp(n, n

′, c, c′, Ps, Lj)]
(5)

f consists of three components: fs(n, c, Ps, Lj) and
fs(n

′, c′, Ps, Lj) are the unary features computed for match-
ing super-pixel patch n and n′ against label c and c′ re-
spectively; the third component fp(n, n′, c, c′, Ps, Lj) corre-
sponds to pairwise ”similarity” between n and n′ with respect
to their labels. The first two terms are 5d whereas the last term
is 1D, hence forming a 11d feature vector.

4.1. Unary Feature

Let’s first consider the unary feature fs(n, c, Ps, Lj) com-
puted as:

fs = [pnc, IoU
c
n, ρu(L

n
κ1
c
, n), ρu(L

n
κ2
c
, n), δratio(L

ncen
Oκ1cκ2c

)]

(6)



Fig. 3. Unary feature illustration. (a) is the human pose esti-
mated by [1]. (b) shows we expand skeletons into rectangles
to effectively framed each body parts. (c) depicts the line we
defined in Sec. 4.1

Fig. 4. Pairwise feature illustration. (a) shows a natural
human pose: upper leg is adjacent to lower leg. While
(b) shows variability of poses add different connectivities:
clasped hands.

In the 5D feature vector, the first term computes the prob-
ability pnc that super-pixel patch n labeled as c under the ini-
tial score map Ps. The second term augments each segment
(a line segment between a pair of joints) in the estimated pose
into a rectangle recc as shown in Fig. 3 where we use the
canonical model to determine the width and height of the rect-
angle [13]. It then measures the percentage of the superpixel
lying inside the bounding rectangle as IoU cn ∈ (0, 1).

For the third and the fourth terms, recall each body part c
should be associated with two joint (κ1c and κ2c) or a ”bone”
(line segment) κ1c − κ2c . We therefore connect the centroid
ncen of super-pixel n with the two joints to form two line
segments L n

κ1
c

and L n
κ2
c

and we individually measure the per-
centage of the two segments that lie inside recc.

The final term measures the ”distance” between the cen-
troid of the superpixel to the ”bone”, i.e., by computing the
distance from the centroid ncen of the superpixel to the mid-
pointO of line segment κ1c−κ2c . Conceptually, the smaller the
distance the more likely n should be labed as c. We normalize
this distance by the length of the bone as δratio.

Since each superpixel-label pair maps to a 5d feature vec-
tor, two superpixels and their potential labels map to a 10d
vector.

4.2. Pairwise Feature

The last term fp(n, n
′, c, c′, Ps, Lj) is computed as:

fp =


ρc=c′(L

n′
cen

ncen , recc) when c = c′

ρc6=c′(L
n′
cen

κ1
c′

, recc′) + ρc6=c′(L
ncen
κ2
c

, recc)

2
when c 6= c′

(7)
We consider two cases: 1) the two superpixels labeled as

the same body part, i.e., c = c′ or 2) they are labeled as differ-
ent body parts, i.e., c 6= c′. For the former (Fig. 4 we connect
the corresponding centroids of the two superpixels into a line
segment L

n′
cen

ncen and compute the percentage of pixels that lie
in recc as ρc=c′(L

n′
cen

ncen , recc).
For the latter, if the two body parts c and c′ are adjacent to

each other, we simply deem such labeling is in-feasible and
set the value to be 0. For example, the head should be adjacent
to the torso, the torso to the upper arm, etc. In addition, var-
ious movements can cause different connectivities, as shown
in Fig. 4(b). This can be determined by the movement of the
body, e.g, crossing arms, arms on legs, etc.

In the adjacency case, every pair of body part c and c′

should have a common joint κcc′ . We therefore can connect
the common joint with the centroid of the two superpixels
as L ncen

κcc′
and L

n′
cen

κcc . We then compute the percentage of the
line segment L ncen

κcc′
lying within recc as ρc6=c′(L ncen

κcc′
, recc).

Similarly, we can compute ρc 6=c′(L
n′
cen

κcc′ , recc′) accordingly.
We use the average of the two values as the last term in the
feature vector.

4.3. Training and Optimization

Once we define the f as described above, we set out to train
our classifiers {wcc′ , cc′ ∈ C2} using non-linear logistic re-
gression. Specifically, we use the VOC12 human part train-
ing dataset that contains 1,712 images. After the training
process, we can compute the pairwise superpixel probability
pnn′cc′(Ps, Lj) as:

p(znn′cc′ = 1) =
1

1 + exp(−wcc′ · f(n, n′, c, c′, Ps, Pj))
=
〈
wcc′ , f(n, n

′, c, c′, Ps, Pj)
〉

(8)

Finally, we solve Eq. 2 using the state-of-the-art integer
linear programming (ILP) solver Guruobi. For initialization,
we simply use the semantic segmentation results of DeepLab
where every ynn′ is initialized by detecting if the two patches
lie in the same human bounding box. If a patch lies in the
intersection regions of multiple bounding boxes, we assign
it to the closest bounding box. We then compute znn′cc′ =
xncxn′c′ynn′ .



Fig. 5. Our semantic segmentation results on VOC PASCAL-
Person-Part. We compare our method with recent state-of-
the-art methods FCN [4], DeepLab(our own implementa-
tion) [2] and Xia et al. [3].

Next, we find a feasible solution of set D by only consid-
ering the data term. Finally, we add the smoothness term and
iteratively refine D under the pairwise constraints (Sec. 3.1).
The iterative stops when the change is lower than a pre-set
threshold (1% in our case).

5. EXPERIMENTS

We first evaluate our technique on publicly available hu-
man part datasets, VOC PASCAL-Person-Part [9]. They pro-
vide semantic part segmentation of human from the PASCAL
VOC2010 dataset. We use 7 semantic labels: head, torso, up-
per/lower arm, upper/lower leg in our experiment. For train-
ing and validation, we use 1, 716 training images and 1, 817
testing images. We compare our method with the state-of-art
algorithms, i.e., FCN [4], DeepLab [2] and the work by Xia et
al. [3]. All experiments (including training and testing) were
performed off-line on a PC with CPU Intel Core i7-5820K,
32GB memory, and NVIDIA TITAN X GPU. On computa-
tional time, ILP optimization described in Sec. 3.2 on average
takes about 1 minute on images of a resolution 335× 500.

Initial pose estimation and part segmentation. Our
method takes pose estimation as input and outputs human
part segmentation. To obtain initial human pose estimations,
we employ two pre-trained frameworks, e.g., AlphaPose [1]
for pose extraction and Mask RCNN [11] for human bound-
ing box prediction. For initial human part segmentation,
we adopt an end-to-end ResNet-based learning architecture
DeepLab [2]. After initialization, we obtain, for each image
in the dataset, the bounding box based pose results along with

a human part score map with 7 classes: 6 human parts and 1
background label.

Human part semantic segmentation evaluation. We
conduct our experiments on 1,817 testing images from the
VOC PASCAL-Person-Part dataset. Fig. 5 shows visual com-
parisons of our technique vs. the recent semantic segmenta-
tion solutions by Long et al. [4], Chen et.al [2] and Xia et.al
[3]. We refer the reviewers to the supplementary materials for
the complete results.

Method Size XS Size S Size M Size L
FCN [4] 31.2 44.4 50.1 49.5
DeepLab [2] 29.3 45.4 52.7 54.3
Xia et al. [3] 39.8 50.2 54.1 54.5
Attention [5] 37.6 49.8 55.1 55.5
Our 40.0 51.3 57.1 58.3

Table 1. Mean IOU(mIOU) of human part segmentation on
four different sizes of human. We observe that our Pose2Body
technique achieves more accurate labeling results over all
sizes.

We observe that our Pose2Body technique achieves much
better visual quality on scenes that exhibit heavy occlusions
and cluttered environments. For example, in the climber im-
age, our method manages to correctly label the lower legs
whereas previous methods fail as shown in the second row
of Fig. 5. This is because occlusions impose significant chal-
lenges to directly label the body parts: the arm and leg were
deemed to be a single part in previous approaches whereas our
technique successfully separates their corresponding skele-
tons and hence their labels. In the dog-human image, state-
of-the-art deem the dog be a part of the human and hence
fails to correctly label the body parts. Our technique, in con-
trast, manages to determine the dog should not be a part of the
skeleton (due to violations of continuity) and correctly label
the human and her body parts.

For quantitative evaluation, we compute pixel-wise ac-
curacy measurement, i.e., mean pixel intersection-over-
union(mIOU) over each class. In Table 2, we compare our
method with four prior art [5, 2, 4, 3]. Our method outper-
forms these solutions by approximately 2% on average over
all parts. In particular, our technique achieves much higher
mIOU on Torso, L-arms, U-legs, L-legs and Background.

Method Head Torso U-arms L-arms U-legs L-legs Background Ave.
FCN [4] 77.99 52.84 37.75 36.67 32.66 30.47 92.39 51.54
Attention [5] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39
Xia et al. w/o pose [3] 79.83 59.72 43.84 40.84 40.49 37.23 93.55 56.50
Xia et al. [3] 80.21 61.36 47.53 43.94 41.77 38.00 93.64 58.06
DeepLab [2] 80.12 61.47 47.62 43.53 41.65 37.00 93.59 57.86
Our 81.27 61.69 45.79 46.88 45.04 43.54 94.49 59.82

Table 2. Mean IOU(mIOU) of human semantic part segmen-
tation on PASCAL human part dataset with 6 body parts. We
show that our technique outperform the stat-of-the-art meth-
ods not only on average over all parts, but also achieves much
higher mIOU values in most individual human parts.



This is because pose estimation manages to restrict the la-
bel region within the bounding boxes so that the leg and arm
regions become better separated and hence our computed fea-
tures become more separated. [4, 2] produce higher errors
on the upper & lower leg parts. Recall that Xia et al. [3] also
refine the initialized results used two types of initializations:
the first using VGG-16 (boosting from 56.50 to 58.06) and
the second using ResNet-101 (boosting from 62.66 to 64.39),
achieving about 1.56 and 1.73 gain. We use initialization
obtained from DeepLab and we manage to boost the perfor-
mance from 57.86 to 60.02, achieving about 2.16 gain.

Next, we follow [10] and conduct experiments on vari-
able human sizes. We categorize all human instances detected
by the human detector into four different sizes in terms of the
bounding box size Sb and calculate the average mIOU on in-
dividual categories. Specifically, we use four sizes: size XS
where Sb ∈ [0, 80], size S where Sb ∈ [80, 140], size M
where Sb ∈ [140, 220], and size L where Sb ∈ [220, 520].
Table. 1 shows the final results. We show our method outper-
forms the baseline techniques on all sizes except size XS.

6. CONCLUSIONS AND DISCUSSIONS

We have presented a novel human parts segmentation scheme
based on human pose estimation. Our Pose2Body technique
partitions pixels within the bounding box of each human sub-
ject into superpixels and employs the conditional random field
(CRF) model for labeling each superpixels. Specifically, we
have designed a class of features that correlate the appearance
and location of superpixels with the estimated pose as well as
correlate pairs of superpixels. We have developed reliable so-
lutions to solve for the CRF using integer linear programming
and have conducted comprehensive experiments to demon-
strate the advantages of our technique over the state-of-the-
art. A limitation of our approach is that it still relies on the
estimated pose as input rather than simultaneously conduct-
ing pose estimation and semantic labeling. In the future, we
intend to explore uniformly modeling both problems in terms
of label assignment.
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