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Abstract

We present a novel light field structure-from-motion
(SfM) framework for reliable 3D object reconstruction.
Specifically, we use the light field (LF) camera such as
Lytro and Raytrix as a virtual 3D scanner. We move an
LF camera around the object and register between multiple
LF shots. We show that applying conventional SfM on sub-
aperture images is not only expensive but also unreliable
due to ultra-small baseline and low image resolution. In-
stead, our LF-SfM scheme maps ray manifolds across LFs.
Specifically, we show how rays passing through a common
3D point transform between two LFs and we develop re-
liable technique for extracting extrinsic parameters from
this ray transform. Next, we apply a new edge-preserving
stereo matching technique on individual LFs and conduct
LF bundle adjustment to jointly optimize pose and geome-
try. Comprehensive experiments show our solution outper-
forms many state-of-the-art passive and even active tech-
niques especially on topologically complex objects.

1. Introduction
Recovering high-fidelity 3D models from imagery data

is a long standing problem in computer vision. Significant
progress has been made in the past decade, on both passive
and active fronts [33, 18, 31]. New active solutions based
on structured light and time-of-flight [16][12] can now ac-
quire 3D models in real-time for applications such as inter-
active gaming. They are, however, mainly limited to indoor
applications to avoid interference from environment light-
ing. Further, most affordable active sensors are of a low
spatial and depth resolution. In contrast, passive techniques
such as Structure-from-Motion (SfM) have been perfected
in the few two decades and can handle both indoor and out-
door scenes as large as an urban environment [8, 1, 2, 32].
The final reconstruction, however, is generally sparse and
requires elaborate triangulation and model fitting [7].

The renewed interest on virtual reality (VR) and
augmented reality (AR) has also brought new demand

Figure 1. The light field 3D scanner framework for producing ultra
high quality 3D reconstruction.

for 3D reconstruction - 3D real objects need to be
“scanned” efficiently, accurately, and most importantly
omni-directionally, so that VR headset users can freely lean
towards or walk around the captured subject. The best
known solution is the USC light stage where structure light
and multi-camera acquisition are coupled for shape, texture,
reflection and motion capture. A miniature version devel-
oped by 8i, a leading VR startup company, uses a similar
dome setup to acquire photorealistic human characters. Al-
though effectively, such solutions are bulky, expensive, and
unsuitable for onsite 3D acquisition. Other solutions such as
Microsoft KinectFusion [18] yields coarse 3D models due
to low range resolution as shown in Fig. 7.

In this paper, we present a 3D object scanning solution
that uses the LF camera as a virtual 3D scanner (Fig. 1).
Light fields are image-based representations that were orig-
inally designed for producing special photographic effects
such as refocusing and view morphing. With the availability
of commodity LF cameras such as Lytro and Raytrix, a light
field can now be directly acquired in a single shot. Com-
pared with classical multi-view geometry, such as Light
Stage, LFs exhibit several unique features amenable for 3D
reconstruction, including regular sampling pattern [26, 36],
dense angularly sampling density [6, 15, 22], and subpixel
disparity [19, 39]. By far light fields have shown success
in obtaining disparity maps through stereo matching. Yet,
for full 3D scanning using multiple light fields, several key
issues such as light field pose estimation and depth fusion



need to be addressed.
We present a novel light field structure-from-motion

(SfM) framework for reliable 3D object reconstruction.
Specifically, we use the light field (LF) camera such as Lytro
and Raytrix as a virtual 3D scanner. We move an LF camera
around the object and register between multiple LF shots.
We show that applying conventional SfM on subaperture
images is not only expensive but also unreliable due to ultra-
small camera baseline and low image resolution. Instead,
our LF-SfM scheme maps ray manifolds across the LFs.
Specifically, we show how rays passing through a common
3D point transform between two LFs and we develop reli-
able technique for extracting the extrinsic parameters from
this ray transform.

Next, we apply a new edge-preserving stereo matching
technique on individual LFs. Our new LF stereo matching
scheme preserves the sharpness of the occlusion boundary
which is essential for high-fidelity 3D reconstruction. Fi-
nally, we conduct light field bundle adjustment to jointly
optimize pose and geometry estimation. To validate our
approach, we compare our scheme with two classical ap-
proaches: SfM with all views in all LFs cameras and Mi-
crosoft KinectFusion [18]. We show that our scheme pro-
vides a much more reliable solution especially when recon-
structing topologically complex objects.

1.1. Related Work

As a passive sensing scheme, our work is most related to
structure-from-motion and light field stereo vision.

Structure-from-Motion (SfM) aim to simultaneously re-
cover camera motion and scene structure from multiple im-
ages [9, 35], presumably captured by a perspective camera.
With immense computational powers, SfM can now be used
to recover very large scale 3D models [37, 34, 17, 10, 25],
e.g., from community photo collections shared on the in-
ternet [33]. The key component in SfM is to establish re-
liable feature correspondences. For cultural heritage archi-
tecture composed mainly of piecewise linear facades, SfM
has shown great success in obtaining extremely realistic
models [21, 5, 27, 28]. However, for geometric models that
exhibit similar texture and complex topology (e.g., trees or
plants), the results are often less satisfactory since only a
small number of reliable feature correspondences can be
established across views and thereby be reconstructed, as
shown in Fig. 7. We refer the reviewers to a comprehensive
survey [13] that characterizes the cons and pros of SfM.

We adopt the LF camera as the capture apparatus. Light
fields are image-based representations that use densely sam-
pled rays as a scene description. They were traditionally
acquired using an array of cameras positioned on a 2D reg-
ular grid and can now be acquired through a single shot
using a light field camera. For example, using an 11MP
sensor and 0.1 million microlenses, the Lytro camera can

acquire 100 views of the scene. Conceptually, LFs can be
viewed as a special form of multi-view geometry. Real light
fields, especially the ones captured by the plenoptic cam-
eras, exhibit two unique features: 1) it preserves a regular
sampling pattern and 2) the angular sampling is generally
much denser. A number of new approaches have been re-
cently developed that effectively exploit these two features
[26, 36, 6, 15, 22, 19, 39].

The dense angular sampling, for example, enables ten-
sor analysis that can be further used to optimize the direc-
tion/depth field in 2D Epipolar slices [39]. It also enables
angular ray statistics analysis where the color distribution
of rays can be used separate specular vs. diffuse, occlusion
vs. non-occlusion, transparent vs. opaque 3D points. Chen
et al. further proposed a bilateral consistency metric based
on ray statistics for reliable stereo matching under heavy
occlusions [6]. The regular sampling property, on the other
hand, provides a useful prior. Heber et al. model depth from
LF as a rank minimization problem [15]. Lin et al. proved
that the aliasing artifacts in LF rendering preserves symme-
try with respect to disparity due to regular sampling [26].
They have further tailored a data term that effectively uses
such symmetry to tackle noise and undersampling.

Although each LF image can be used to generate a dis-
parity map, in order to “weave” multiple disparity maps into
a 3D model, it is essential to conduct online extrinsic cal-
ibration between LF images, a process analogous to SfM
but applied to LFs. Brute-force approaches that directly
treat each LF view as a camera yield suboptimal results
(Fig. 7). Johannsen et al. [20] recently derived the relation-
ship between scene geometry and light field structure under
the Plucker ray coordinates for image registration. Their
derivation assumes that the two LFs uses identical parame-
terization whereas we derive a more general case between
two arbitrary LFs. Further, we demonstrate how to directly
conduct 3D modeling by registering multiple LFs.

2. Pose Registration of Light Fields
In this section, we describe our light field pose estima-

tion method in ray space. To represent a light field, we
adopt the two-plane-parametrization (2PP) for its simplicity
[24, 11]. In 2PP, each ray is parameterized by its intersec-
tions with two parallel planes Πuv and Πst. In this paper,
we set Πuv as the camera plane at z = 0 and Πst as the
image plane at z = 1. Hence each ray can be represented
as the combination of x − y component of its intersections
with Πst and Πuv . To further simplify our derivation, we
use the σ = s − u and τ = t − v to parameterize the ray
direction as [σ, τ, 1]. All rays can be parameterized as a 4-
tuple [σ, τ, u, v]. The light field coordinate system is set as
follows: the origin corresponds to the CoP of the central
camera and the x, y axis are concordant with the subaper-
ture image axis.



Given a reference LF F and a target LF F′, we assume
F corresponds to the world coordinate system and set out to
register F′ via rotation R and translation T .

To register the LFs, we first derive ray space mapping
from the first LF to the second. In the reference LF, a ray
r[σ, τ, u, v] that pass through a 3D point P = [px, py, pz]
should satisfy: 

u+ λσ = px

v + λτ = py

λ = pz
(1)

This yields to two linear constraints:

[
pz 0 1 0 -px

0 pz 0 1 -py

]
︸ ︷︷ ︸

M


σ
τ
u
v
1

 = 0 (2)

Now that consider a ray r′[σ′, τ ′, u′, v′] in the target LF
that also pass the same 3D point P . Since the two LFs are
parameterized in their own coordinate systems, we first map
r′ to r’s coordinate system as:

w

σ∗τ∗
1

 = R

σ′τ ′
1

 ,
ûv̂
q̂

 = R

u′v′
0

+ T (3)

Specifically, we can trace the ray from point [û, v̂, q̂] along
direction [σ∗, τ∗, 1] towards the parametrization plane of r
as: u∗v∗

0

 =

ûv̂
q̂

− q̂
σ∗τ∗

1

 (4)

r′ is then represented as [σ∗, τ∗, u∗, v∗] in the reference LF.
Transform r′ using R, T to the reference LF as r̂ where

r̂ should still satisfy Eqn. 2 as the ray also passes through
P :

M · r̂(R, T ) = 0 (5)

We call this constraint ray manifold constraint. To re-
cover this mapping, the brute-force approach is to recover
the 3D point P first, i.e., the parameters of M , as shown in
Johannsen et al. [20]. In reality, due to low image resolution
of the subaperture image and ultra-small baseline, reliably
computing the depth of the feature points is very difficult.
Instead, we adopt the ray-ray intersection constrains to find
the optimal R, T .

Figure 2. (a) Subaperture images from Lytro Illum Camera. (b) To
model LF registration, we map the ray r1 to r∗ in the reference LF
and r∗, r satisfy the side operator.

Consider any two rays r0[σ0, τ0, u0, v0] and
r1[σ1, τ1, u1, v1] in different subaperture images pass
through the same 3D point should satisfy the side operator
(σ1 − σ0)(v1 − v0) = (τ1 − τ0)(u1 − u0) [41].

The constraint applies to r and r′ as

(σ∗ − σ)(v∗ − v)

(τ∗ − τ)(u∗ − u)
= 1 (6)

Notice that σ∗, τ∗, u∗, v∗ is a function in R and T . There-
fore, if we obtain ray-ray correspondences, we can apply
Eg. 6 as the pose constraint.

It is important to note that the ray-ray intersection con-
straint applies to any 3D point. Therefore, we can combine
all pairs of matched feature rays ri and r∗j between F and
F′ even if they correspond to different 3D points. Finally,
we can form an objective function:

E =
∑
i,j

||(σ∗i −σj)(v∗i −vj)− (τ∗i − τj)(u∗i −uj)||22 (7)

To find the optimal R, T between F and F′, we can min-
imize the energy function via the gradient based optimiza-
tion method [30]. To robustly establish ray-ray correspon-
dences across LFs, we first detect the SIFT features of each
subaperture image within the same LF and establish corre-
spondences between subaperture images within each LF to
form groups of features, each potentially corresponding to a
3D point. We prune the outliers using RANSAC and elim-
inate the groups that do not contain sufficient number of
rays. Next, we match groups of ray features across the LFs
and again apply RANSAC to remove the outliers. Finally,
we use the remaining matching groups for minimizing the
energy function 7.

3. Light field Stereo Matching
Almost all depth/disparity estimation methods adopt

some kind of smoothness prior for the result. The prior
helps to correct false matches and propagate depths to oc-
cluded regions where no match could be found. Accurate



prior is crucial to robust matching and occlusion handling.
Traditional cost aggregation based depth estimation meth-
ods usually assume that within a supporting window the
depth is locally constant. The aggregated matching cost
is computed as patch matching cost according to aggrega-
tion weights based on color similarity. However, this lo-
cally constant assumption is only valid for fronto-parallel
surfaces. It is inaccurate for curved or slanted surfaces, or
around depth boundaries. In practice, the surfaces are al-
ways not perfectly planar and do not face right to the cam-
era. Most disparity errors occur around depth boundaries
where occlusion happens.

We propose a more flexible prior which is capable of
modeling curved and slanted surfaces, and respects depth
boundaries. Similar to the guided image filtering [14], we
assume that locally, the disparity can be represented as a
linear combination of three color channels of the image.
Mathematically, the disparity qi for pixel i in color image
I is represented as:

qi = akIi + bk,∀i ∈ ωk, (8)

where (ak, bk) are some linear coefficients assumed to be
constant in the supporting local window ωk.

We verify this assumption by plotting the errors between
the ground truth disparity and the represented disparity from
three color channels, using the patches from the data set of
image disparity pairs [29]. For locally constant assumption,
the optimal disparity for a local patch is the mean disparity
of the whole patch. From Fig. 3 we can see that, with a
small enough supporting window, the representation error is
negligible and is much less than that of the locally constant
assumption.

Eq. 8 suggests a result that minimize the energy function
for the whole disparity map:

J(q, a, b) =
∑
k∈I

(
∑
i∈ωk

(qi −
∑
c

ackI
c
i − bk)2 + ε

∑
c

(ack)2),

(9)

where the superscript c indicates the color channel, and the
second term on ak is for numerical stability and slightly fa-
vors constant disparity with a small weight ε. Following the
derivation in [23], eliminating (ak, bk) by minimizing the
cost J(q, a, b), Eq. 9 yields a pure regularization on dispar-
ity map q:

J(q) = qTLq, (10)

where the Laplacian L is an N ×N matrix, whose (i, j)-th
element is∑
k|(i,j)∈ωk

(δij −
1

|ωk|
(1 + (Ii − µk)(Σk +

ε

|ωk|
I3)−1(Ij − µk)),

(11)

Figure 3. Verification of the linear combination assumption. (a)
and (b) are the image and its groundtruth disparity. Red dots in
(c) shows the patch locations used for error computation. (d) plots
the error curves (blue: locally constant assumption; green: our
assumption) vs. patch sizes (3× 3, 5× 5, . . . , 11× 11).

where Σk is a 3 × 3 covariance matrix, µk is a 3 × 1 mean
vector of the colors in window ωk, and I3 is the 3×3 identity
matrix.

The regularization term or prior J Eq. 10 has several
benefits that facilitate a high quality disparity estimation:
first, surface curvature and orientation usually produce their
corresponding shading effects and will eventually be incor-
porated into the prior by combining color information; sec-
ond, disparity discontinuities will align with the edges in
the referent color image. In other words, the structure infor-
mation within the color image can be incorporated into the
prior.

We integrate this prior into a global formulation for depth
estimation from LF data. Let Ir be the center reference light
field view (or the center subaperture image when captured
using a plenoptic camera), and Io be the second subaperture
image at the 2D position (o− r). We set out to compute the
disparity map by minimizing the following energy function:

E(q) =
∑
o

∑
i

(Ir(i)− Io(i+ qi ∗ (o− r)))2 + λqTLq,

(12)

where the first term corresponds to data fidelity and λ is
a balancing weight. Since the baseline between views
in the LF is usually very small, Io can be expanded as
Io(i + qi ∗ (o − r)) ≈ Io(i) + ∇(o−r)Io(i)qi, where
∇(o−r)Io(i) is the gradient along direction (o − r). Then
Eq. 12 can be reduced as E(q) =

∑
o

∑
i(Ir(i) − Io(i) −



Figure 4. Intermediate Result of Point Cloud Generation. (a) is
corresponding RGB image, (b) is disparity map, (c) is filter mask
after threshold and Graph Cut, (d) is disparity map after apply
mask, (e) is depth map and (f) is point cloud result.

∇(o−r)Io(i)qi)
2 + λqTLq. It only involves quadratic costs

and can be efficiently solved. To further improve its effi-
ciency and robustness, we employ a multi-scale approach
that starts from coarse downsampled inputs and recovers
the corresponding disparity map of low resolution. Then
we linearly scale and upsample the low resolution disparity
map to higher resolution, and treat it as an initialization for
the disparity estimation of the higher resolution level.1 This
process continues until the original resolution is reached.

4. Bundle Adjustment
After we obtain both the LF poses and their correspond-

ing depth maps acquired at different viewpoints, we aim to
fuse the results. The simplest approach would be to directly
combine the point clouds. In reality, since both the pose
estimation and depth maps can contain errors due to small
baselines and low image resolution, such direct fusion can
produce noisy results.

We therefore add an additional bundle adjustment stage
as commonly used in SfM to simultaneously refine scene
geometry and camera pose estimation. Different from tra-
ditional SfM method that formulates this optimization as
least square minimization, we combine 3D geometry and
ray geometry consistency terms.

Recall two rays r in F and ray r∗ in F′ satisfy the side
operator:

z − 1

z
=

(s∗ − s)
(u∗ − u)

=
(v∗ − v)

(t∗ − t)
(13)

Since we have computed the depth z, e.g., through stereo
matching at each LF, we can map depth z′ of P in F′ to F
as z∗ and use Eq. 13 as constraint. In addition, the depth

1With initial disparity q0, E(q) can be rewritten as E(∆q) =∑
o

∑
i(Ir(i) − Io(i + (q0i + ∆qi) ∗ (o − r)))2 + λ∆qTL∆q with

∆q = q − q0. It improves the result since the accuracy in the expansion
of Io(i+ qi ∗ (o− r)) ≈ Io(i+ q0i ) +∇(o−r)Io(i+ q0i )∆qi is more
accurate.

estimation should also satisfy the size operator constraints,
therefore, putting all these constraints together, we set out
to minimize the following energy function for each pair of
r and r∗:

R̂, T̂ , ẑ ← arg min
R,T,z

∑
r,r∗

||(s∗ − s)− ẑ − 1

ẑ
(u∗ − u)||2

+ ||(t∗ − t)− ẑ − 1

ẑ
(v∗ − v)||2

+ ||ẑ − z||+ ||ẑ − z∗||
(14)

Notice that this optimization problem is non-linear. We
there apply the gradient based optimization method [30]
to iteratively refine R̂, T̂ , ẑ. To initialize the optimization
process, we first use the estimated pose in Sec. 2 and the
fused depth maps as inputs. Table 1 compares our technique
vs. the Iterative Closest Point and Johannsen’s method [20]
based on synthetic data. Our method outperforms both so-
lutions in robustness and reliability.

5. Experiments
5.1. Experiment setup

We evaluate our approach on different types of scenes
and additional results (including videos) can be found in
the supplementary materials. We choose the Lytro Illum
camera as the scanning device. We also use the geometric
calibration [4] for intrinsic calibration and subaperture im-
age generation. After calibration, we can map each pixel
(k, l) in a sub-view (microlens) image (i, j) onto the light
field coordinate [σ, τ, u, v] in the camera coordinate system.
Each Lytro LF image is decoded to 5 × 5 subaperture im-
ages (light field views), each at a resolution of 552 × 383.

To conduct 3D scanning, the simplest approach is to
move the LF camera around and capture the object at dif-
ferent poses. Since our approach is largely based on stereo
matching, the results would be sensitive to the background.
To avoid this problem, we place the object on a rotation
table and position our camera on a tripod. The object is po-
sition on a patterned background so that background dispar-
ity can be robustly computed and then eliminated using the
disparity map. The configuration of our setup is shown in
Fig. 6. It is important to note that rotating the object maps
to a combination of translation and rotation between LFs
rather than pure rotation. Further, we do not assume known
rotation speed or enforce the object be positioned perfected
at the center.

We first compare our light field stereo matching method
with the state of arts on the dataset created by Wanner et al
[40]. Fig. 5 shows that the outputs of our method contain



Figure 5. Our stereo matching results compared with state of art methods.

Figure 6. (a) is Our 3D scanning setup, (b) is RGB image and
corresponding disparity map, (c) is the point cloud generated by
our method viewed from different perspectives.

much less error, especially for regions with less textures and
complex static background [26, 38, 19]. The depth maps
produced by our method tend to be smooth and visually
pleasing, as we use linear assumption Eq. 8.

Fig. 7 shows our results on 5 different models: three
plants, a wooden toy house, and a wooden hen. We show
our reconstruction results using 1, 2, and 5 light field views,
respectively. Using 1 view directly corresponds to the dis-
parity/depth map and we observe that although the results
are able to reveal the overall shape of the object, they con-
tain many holes due to heavy occlusions, especially for the
3 plant models. For the house model, our results reveal very
fine geometric details as the LF can be used to detect sub-
pixel disparity. Using 2 light fields, the reconstructions are
significantly improved and we observe many missing re-
gions have been filled up. With 5 light fields, we are able to
obtain high quality 3D models in all 5 cases with nearly all
holes filled up.

Next, we compare our technique vs. SfM and Kinect.
SfM has shown great success in recent years on both pose
estimation and 3D reconstruction. However, SfM generally
generates only a sparse set of 3D points which are gener-

ally insufficient to produce highly detailed models as the
ones shown in the paper. For fairness, we use all light field
views (subaperture images) as input to the Agisoft Photo-
Scan [3]. Fig. 7 and 8 compares the SfM results vs. ours.
With 405 images, SfM still generates rather sparse 3D point
cloud and brute-force triangulation produces wrong geom-
etry and topology.

Next, we compare our technique with the popular active
depth sensor Kinect, along with software KinectFusion for
fusing depth maps acquired from different captures. In our
experiments, we position the Kinect sensor next to the LF
camera so that they capture from approximately the same
angle and position. A first look at the Kinect depth map
reveals that it contains a large number of holes, mainly due
to heavy occlusions. Further, the depth map quality is rather
poor due to low spatial and range resolution. In fact, the
plant leaves are nearly grouped together into a region of
uniform depth and the final fused results exhibit even larger
errors since ICP fails due to incorrect depth maps.

Potentially, one can use a higher quality depth sen-
sor (e.g., a ToF with a much higher depth resolution than
Kinect). In reality, such solutions require elaborate designs
of the ToF unit and cannot be easily adjusted to handle dy-
namic depth ranges once designed. Further, as a common
problem of active depth sensing, they may fail under natural
lighting due to interference. These limitations contrast the
advantages of passive sensing techniques as ours.

All our experiments were conducted using Matlab imple-
mentation on a PC with Intel Core i7-5820K CPU @ 3.30
GHz with 32.0 GB memory. Table 2 shows the running
time of our approach on the datasets shown in the paper. For
clarity, we separate the running time into three components:
LF registration, LF stereo matching and depth map fusion.
The running time shown in the Table 2 is the averaged time



Figure 7. Our results vs. SfM and Kinect. For each model, we illustrate our reconstruction result using 1 view (i.e., the disparity map), 2
views, and 5 views. We also compare with the results generated using SfM and Kinect.

GT R: 16o, T: 62mm R: 23o, T: 78mm R: 30o, T: 121mm
1 2 3 average 1 2 3 average 1 2 3 average

Rot. Err
ICP 0.36 0.16 0.64 0.39 1.15 0.99 1.38 1.17 0.21 0.21 0.22 0.21

Johannsen [20] 0.07 0.39 0.88 0.45 0.86 0.89 1.23 0.99 0.6 0.29 0.36 0.42
Ours 0.06 0.03 0.35 0.15 0.8 0.67 0.84 0.77 0.08 0.14 0.12 0.11

Tran.Err
ICP 1.51 0.68 1.66 1.28 2.08 1.16 1.36 1.53 0.35 0.32 0.33 0.33

Johannsen [20] 0.11 0.6 0.09 0.27 1.2 0.72 1.67 1.2 0.65 0.25 0.32 0.41
Ours 0.05 0.11 0.19 0.12 1.27 1.07 1.29 1.21 0.13 0.17 0.16 0.15

Table 1. Accuracy of the different methods: we set up virtual scenes and capture LF images from different view points to generate synthetic
data to compare our method with others, the number 1, 2, 3 means different noise. The result shows that our method is more reliable and
accurate.

for conducting registration of a pair of LF, stereo matching
on one LF, fusing two depth maps. Not surprisingly, the

most time consuming component is stereo matching which
requires sophisticated optimization.



Figure 8. Closeup views of the results using our technique vs. SfM and Kinect fusion. Notice that SfM produces very sparse results
whereas Kinect generates many holes to due to occlusion.

Plant1 Plant2 Plant3 House Chicken
LF registration 241.578 267.031 298.344 335.563 288.984
LF stereo matching 2039.06 2061.73 2052.63 1988.72 2018.44
Depth map fusion 13.462 3.449 2.381 5.244 3.962
Total run time 2294.1 2332.21 2353.355 2329.527 2311.386

Table 2. Run time statistics (in seconds)

Although our results outperform both classical SfM and
active sensing (Kinect), they still exhibit certain artifacts.
For example, the ghosting artifacts in the final results (Fig.
7) are caused by inconsistent disparity maps. Even though
the feature points are accurately registered thanks to the LF-
SfM registration framework, 3D points on textureless re-
gions are slightly misaligned, causing ghosting. This is be-
cause stereo matching relies on the smoothness prior to fill
in these textureless regions and the results are thus overly
smooth and even flat. Although each disparity map appears
plausible, it still contains large errors respect to the ground
truth on these regions.

6. Conclusions
In this paper, we have developed a 3D object scanning

solution that uses the LF camera as a virtual 3D scanner.
By exploring the unique light field geometric structures,
we have developed a novel LF pose estimation method that
exploits ray-ray correspondences to gain accurate extrinsic
calibration. We have further developed a new LF stereo
matching algorithm that incorporate image gradients into
regularization to preserve occlusion boundaries in the depth
map. The results are refined via a ray-space bundle adjust-
ment.

Our current approach separates pose calibration and
stereo matching estimations. Conceptually, the two pro-

cesses can be integrated into a unified framework, i.e., find-
ing the optimal pose parameters that yield to the most con-
sistent disparity maps. The problem, however, would re-
quire more sophisticated modeling and optimization and is
our immediate future work. There are other quite interesting
directions. For example, how to couple a light field camera
with a ToF camera. Ideally, the ToF can provide a reliable
but low quality depth map that can be refined via LF stereo
matching. One can further add a high resolution still cam-
era to potentially generate a high resolution light field. As
different types of sensors are getting more readily available,
hybrid sensing problems as discussed above will surely at-
tract attentions from both the vision and imaging communi-
ties.
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[30] J. J. Moré. The levenberg-marquardt algorithm: implemen-
tation and theory. In Numerical analysis, pages 105–116.
Springer, 1978.

[31] J. L. Schönberger, F. Radenović, O. Chum, and J.-M. Frahm.
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